15 research outputs found

    Recent Advances in High-k Nanocomposite Materials for Embedded Capacitor Applications

    Get PDF
    ©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TDEI.2008.4656240In this paper, a wide variety of high dielectric constant (k) composite materials which have been developed and evaluated for embedded capacitor application are reviewed. Current research efforts toward achieving high dielectric performance including highk and low dielectric loss for polymer composites are presented. New insights into the effect of unique properties of the nanoparticle filler, filler modification and the dispersion between filler and polymer matrix on the dielectric properties of the nanocomposites are discussed in details

    High dielectric constant polymer nanocomposites for embedded capacitor applications

    Get PDF
    Driven by ever growing demands of miniaturization, increased functionality, high performance and low cost for microelectronic products and packaging, embedded passives will be one of the key emerging techniques for realizing the system integration which offer various advantages over traditional discrete components. Novel materials for embedded capacitor applications are in great demand, for which a high dielectric constant (k), low dielectric loss and process compatibility with printed circuit boards are the most important prerequisites. To date, no available material satisfies all these prerequisites and research is needed to develop materials for embedded capacitor applications. Conductive filler/polymer composites are likely candidate material because they show a dramatic increase in their dielectric constant close to the percolation threshold. One of the major hurdles for this type of high-k composites is the high dielectric loss inherent in these systems. In this research, material and process innovations were explored to design and develop conductive filler/polymer nanocomposites based on nanoparticles with controlled parameters to fulfill the balance between sufficiently high-k and low dielectric loss, which satisfied the requirements for embedded decoupling capacitor applications. This work involved the synthesis of the metal nanoparticles with different parameters including size, size distribution, aggregation and surface properties, and an investigation on how these varied parameters impact the dielectric properties of the high-k nanocomposites incorporated with these metal nanoparticles. The dielectric behaviors of the nanocomposites were studied systematically over a range of frequencies to determine the dependence of dielectric constant, dielectric loss tangent and dielectric strength on these parameters.Ph.D.Committee Chair: Wong, C. P.; Committee Member: Jacob, Karl; Committee Member: Liu, M. L.; Committee Member: Tannenbaum, Rina; Committee Member: Wang, Z. L

    USP8 promotes gemcitabine resistance of pancreatic cancer via deubiquitinating and stabilizing Nrf2

    No full text
    Gemcitabine (Gem) is the first-line chemotherapy drug for pancreatic cancer, but the acquired chemoresistance also hinders its application. Therefore, research about Gem resistance plays a crucial role in enhancing the therapeutic effect of Gem. As a deubiquitinating enzyme, ubiquitin-specific protease 8 (USP8) was shown to play vital roles in the tumorigenesis processes of several cancers; however, the effect of USP8 on Gem resistance of pancreatic cancer still remains largely unknown. In the current study, we observed that the expression of USP8 was increased in pancreatic cancer patients, it is related to the recurrence of Gem chemotherapy, and USP8 expression could be induced by Gem application. Furthermore, USP8 was found to promote Gem resistance both in vivo and in vitro via regulating cell viability and apoptosis. Moreover, USP8 enhanced the activation of Nrf2 signaling which is dependent on its deubiquitinase ability. At last, we illustrated that USP8 interacted with Nrf2 directly and deubiquitinated K48-linked polyubiquitin chains from Nrf2, stabilizing the expression of Nrf2. In summary, the manuscript revealed the role of USP8 in Gem chemoresistance and suggested USP8 as a potential therapeutic target for pancreatic cancer
    corecore